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Invariant path integrals on symmetric and group spaces are defined in terms of 
a sum over the paths formed by broken geodesic segments. Their evaluation 
proceeds by using the mean value properties of functions over the geodesic and 
complex radius spheres. It is shown that on symmetric spaces the invariant path 
integral gives a kernel of the Schr0dinger equation in terms of the spectral 
resolution of the zonal functions of the space. On compact group spaces the 
invariant path integral reduces to a sum over powers of Gaussian-type integrals 
which, for a free particle, yields the standard Van Vieck-Pauli propagator. Explicit 
calculations are performed for the case of SU(2) and U(N) group spaces. 

1. I N T R O D U C T I O N  

Feynman path integrals offer a deep insight into the relationship between 
classical and quantum phenomena. The extension of  path integrals to non- 
Euclidean spaces provides a natural means of  introducing nonlinear interac- 
tions and the interplay between the physics and the space geometry. For this 
reason there has been considerable interest in the use of  Feynman integrals 
in curved spaces in many branches of  physics. DeWitt (1957) showed how 
to extend the Euclidean Feynman path integral to a Riemannian space. The 
difficulties of  expressing the path integral in non-Cartesian coordinates have 
been known since Edwards and Gulayev (1964) showed the role of  the higher 
order terms in the Taylor expansion of the short-time action functional. The 
effect of  this is that the Cartesian path integral is not invariant under ordinary 
coordinate transformations and depends also on the method of time slicing 
of the broken linear paths. This leads to alternative but equivalent definitions 
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of non-Cartesian path integrals which all satisfy the same SchrSdinger equa- 
tion. DeWitt used Taylor's series expansion of a general action to show that 
the short-time propagator with the classical action satisfies the invariant 
SchrSdinger equation provided a correction term proportional to the scalar 
curvature is added to the action. His form of short-time propagator uses the 
preexponential factor consisting of the square root of the classical Van Vleck 
determinant. This type of determinant, which arises in the theory of motion 
of a classical practice in the phase space, depends only on the classical action. 
DeWitt's short-time propagator in a curved space has the same form as 
the well-known Van Vleck-Pauli finite-time Green's function for quadratic 
systems in Euclidean space. 

Schulman (1968) found that when the Riemannian space is the group 
space of SU(2), which is isomorphic to a 3-dimensional sphere, the integral 
kernel of the invariant Schr6dinger equation can be expressed as a sum over 
all multiple classical paths of the terms consisting of the Van Vleck-Pauli 
formula. This form of the finite-time propagator has been termed "exact" by 
Dowker (1971), who showed that the free particle propagator remains "exact" 
on all unitary group spaces. It is interesting to note that while in the Euclidean 
space the Van Vleck-Pauli formula remains valid for quadratic potentials, 
the exact form of the propagator in curved spaces seems to be found in the 
case of free particle action in locally compact group spaces only. It can be 
shown that the spaces of even higher symmetry than the general group spaces, 
for example, the two-dimensional sphere $2, do not exhibit this property. 

The objective of the present paper is to understand what particular feature 
of a group space enables us to write the exact expression for the free particle 
propagator. This problem has been addressed from various standpoints by 
many authors. Schulman used the well-known spectral Green's function 
expansion in a stationary series of eigenfunctions of the Laplace-Beltrami 
operator on SU(2). This is just the theta function on a group space, which 
can be evaluated to yield the exact form. Dowker obtained the propagator 
by solving the SchrSdinger equation in the group space of SU(N). Other 
authors (for example, Bohm and Junker, 1987) explored the connection 
between the curved manifold and the Euclidean space of higher dimension 
which generates this manifold under the group transformation. These methods 
have been used to define path integrals on n-dimensional spheres and some 
group manifolds which can be immersed in Euclidean space of a higher 
dimension. 

Our approach is to write down the path integral on a symmetric space 
in an invariant form. The summation is over the paths consisting of geodesic 
links confined entirely to the symmetric space. This is a generalization of 
the broken straight-line path used in Euclidean space. We develop a method 
of path integration in which the variables are the geodesic path segments. 
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This path integral is invariant under coordinate changes, so that we can 
dispense with the coordinate-dependent quantum correction term to the classi- 
cal Lagrangian that is needed in the standard linearized approximation of the 
curvilinear path integral (e.g., Groshe, 1991). We show that the invariant 
path integral on a symmetric space is a limit of a random walk on the 
symmetric manifold and leads to a sum over the powers of Riemannian 
integrals of the zonal functions of the manifold. This is the equivalent of the 
standard formula for the spectral representation of the propagator in terms 
of eigenfunctions and energy eigenvalues on a compact manifold. 

Next, we consider a compact group space, which is a special case of a 
compact symmetric manifold. The simplification of a path integral is due to 
the special form of the zonal functions on a compact group manifold: they 
are the characters of the finite-dimensional group representations and, 
according to Weyl (1973), can be expressed as linear combinations of expo- 
nentials in Cartan's radial coordinates. This reduces the functional integral 
to a multiple of independent Gaussian integrals which can be easily evaluated 
to yield the standard result for the closed form of a propagator on a compact 
group manifold (Dowker, 1971). We can show explicitly that the Markovian 
property of the exact propagators is satisfied on all compact group spaces, 
although the demonstration is given only for SU(2) and U(N). 

The structure of the paper is as follows: In Section 2 we explain the 
central mathematical tool based on the work of Gelfand. This consists of a 
generalization of the notion of a mean of an integrable function f(x) over a 
surface of a geodesic sphere S,,(R) with the center at m and the radius R. In 
an N-dimensional Euclidean space the well-known Pizzetti formula (Courant 
and Hilbert, 1962) yields 

Mm(R)f(x) = jNr2- l(R ,41-~2)f(m) 

where Mm(R) is the averaging operator acting on the function f(x) and 
jNr2-1(X) is the modified Bessel function with a symbolic argument involving 
the Laplace operator. 

We show how to write a similar formula for SU(2), namely 

1 sin{�89 - - A} 
Ml(R)f(g) - sin�89 ~ -  A f(g) 

For a mean value of central functions ~(g) over a 2D sphere in SU(2) of 
radius R and a center at radial distance 0 from the origin, we have the 
alternative integral transform formula 

Mo(R)~(g) = a(O, R; u)~(u) du 

where the kernel a(0, R; u) is given by (7). 
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In Section 3 we write down the invariant path integral on SU(2) and 
use the mean value formula to evaluate the finite-time propagator. We derive 
several covariant expressions which show the relationship between the path 
integrals, short-time and finite-time propagators, and the Schr6dinger equa- 
tion. The functional integral allows us to write down a distribution for the 
one-dimensional radial process 0(t) on SU(2): 

e it/8 sin(0102/t) expiO2t/2t expi@2 , 
2 ~  sin �89 sin �89 

In Section 4 we outline the generalization of the path integrals to symmet- 
ric spaces. We also consider the spaces of rank higher than one, where instead 
of a geodesic sphere we are led to introduce the so-called sphere of complex 
radius. Unlike the rank-one spaces, here the complex radius is a function of 
the independent invariants of the group, the number of which equals to the 
rank of the space. We show that the free particle path integral will be exact 
if the zonal functions are essentially a sum of linearly independent exponen- 
tials of complex radius variables. This is always true for compact group spaces, 
where the zonal functions are just the characters of the finite-dimensional 
irreducible representations of the compact group. Section 5 provides an illus- 
tration in the form of the U(N) group space. 

The Appendix provides an overview of the definitions and the theorems 
for symmetric spaces used in the main text. 

2. MEAN VALUE PROPERTIES 

Godement (1952) was first to show that the zonal functions ~(y) on 
any symmetric space M = GIH satisfy a functional equation of the form 

[~(x)" [~(r) = f .  [,,(x, h, r) dh (1) 

where x and r e G, h E H, and dh is the invariant volume element of H. 
Berezin and Gelfand (1962) realized that the integral on the right-hand 

side of the above identity can be interpreted geometrically as a mean value 
of [~(y) over a surface of a sphere S(x, r) with complex radius r and center 
at x. Thus we can write 

1 Iy [~(y) Ix(dy) =-- Mx(r)~(y) (2) 
~(x) " [~(r) = - ~  ~S(x,r) 

where i~(S) is the surface area of the sphere S(x,r). 
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It can be shown that if the space M is a group space of a compact Lie 
group G, then, up to a constant multiplier, the zonal spherical functions are 
the characters ~bV(g) of the v-dimensional irreducible representation of G. 

We now consider the group space of SU(2), the group of complex 
unimodular matrices of second order. Every unimodular matrix may be 
brought by a similarity transformation to diagonal form with the diagonal 
entries el = IEi~ and e2 = e -i~ The complex distance is a single parameter 
0 which lies in a closed interval between 0 and 2xr and represents the geodesic 
distance from the origin. 

The invariant integral measure on SU(2) can be written as a product of 
an angular part corresponding to the similarity transformations and a polar 
part, which is the measure on diagonal matrices given by the formula du[e] 
= 4 sin2(10) dO. 

The zonal functions Iv(g) are the characters of SU(2) divided by the 
dimension of the representation 

sin{(2v + 1)0/2} ~v(~) = (3) 
(2v + 1) sin 0/2 

where v = 0, 1/2, 1, 3/2, etc. 
The functional relation (2) between the zonal functions takes on a sim- 

ple form, 

go(rK~(g) = [~(r)[~(0) (4) 

Here the mean is over a sphere of radius r with a center at the distance 0 
from the origin. 

The Laplace-Beltrami operator A on SU(2) is invariant under right and 
left translations. It can be expressed in the form (Berezin, 1962) 

1 A = A o + ~ A o  

where 

1 02 0 1 
Ae sin �89 002 sin 2 4 

is the radial part of the Laplace operator and Ao is the angular part, which 
does not involve any derivatives with respect to the polar coordinate 0. The 
constant factor of 1/4 is equal to 1/6 of the scalar curvature R. 

The zonal functions are eigenfunctions of the Laplace-Beltrami operator 

A[~(g) = Ao[ , (0  ) = A(vK~( g )  
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with the eigenvalue 

A ( v )  = ~ - 

This allows us to rewrite (4) in the symbolic expression 

1 sin{�89 - A0} 
M0(r)[~(0) = sin �89 ~ A0 ~(0) 

Now, any integrable function on the group space of SU(2) may be approxi- 
mated by a linear combination of zonal functions and its translates. Therefore, 
the validity of the above formula extends to all integrable functions f(g) if 
we replace the radial part of the Laplace operator by A: 

1 s i n { � 8 9  (5) 
M~ = sin �89 1 ~ -  A 

Recalling that jl/2(x) = (sin x)lx, we see that the above formula resembles 
the Pizzetti formula for E3. 

If we apply formula (5) to spherical functions O~(g), we obtain a stronger 
version of (4), showing that also the spherical harmonics are eigenfunctions 
of the averaging operator 

Mgo(r)~(g) = {~(r)*~(go) (6) 

We now give an alternative integral expression for the mean on a sphere 
valid for central functions only. Start with the simple integral identity 

r l+O2 sin �89 
~ ( 0 0 ~ ( 0 2 )  = 

J01-02 4 sin �89 sin �89 [~(u) du 

which follows by substitution from (3). We see that according to (4), the 
left-hand side of the above identity is the mean of [~(u) over a sphere of 
radius 02 with center at the distance 01. As the integral operator on the right- 
hand side acts linearly on [~(u) and as every zonal function can be represented 
as a linear combination of characters, the right-hand side must be valid for 
any central function [(g). 

Thus we have 

M01(02)[(g) = a(01, 02; u)~(u) du 

where the kernel of the integral operator is 
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�9 l 
s i n  ~ u  

a(01, 02; u) = 4 s in  �89 s i n  �89 f o r  01 - 0 2 ~--- u ~ 01 -4- 0 2 

a(01, 02; u) = 0 otherwise 
(7) 

3. PATH INTEGRALS ON SU(2) SPACE 

3.1. Invariant Definition of Path Integral 

The propagator of the Schr6dinger equation can be represented in the 
form of the Feynman path integral f~ exp{iS(qt)} d[qt], where the integral 
over the measure d[qt] signifies the "sum" of all paths qt between the fixed 
endpoints x and y. This can be rewritten as a limit of an infinite Marko- 
vian chain 

lira I k(x, ql; St) d[qz] k(ql, q2; St) 
n--~ Jql '"qn-I  

• . . .  k(x, qn-~; St) d[qn-l] k(q~, y; 80 (8) 

consisting of the short-time propagators k(q, q'; ~t) = (2~ri~t) -3/2 exp{ iS(q, 
q'; 80}. The exponential term S(q, q'; ~t) is an approximation to the classical 
action between q and q' over the short time interval ~t = t/n. For a free 
particle the classical action $ = �89 d2(q, q')/~t depends only on the square of 
the geodesic distance between the endpoints. 

The form of path integral (8) lends itself to the following interpretation 
in terms of a random walk, adapted from Roberts and Ursell (1960). We start 
with an initial space distribution in the form of a delta function ~~ -- 
~(x, Xo) centered at a point Xo and define a random walk starting at point x0 
and subject to the following rules: 

1. The process changes the initial distribution in discrete finite time 
steps of duration ~t. 

2. The value at x of a new distribution after k steps is the mean of the 
previous distribution after k - 1 steps calculated over the surface of a sphere 
with a radius 0k centered at x. 

Thus the distribution after n steps will be 

~r = ~ Mx(Ok)~(x, Xo) 
k=l 

Expressing the delta function as a sum of pairs of orthonormal spherical 
functions r and using the identity (4), we obtain 

~r = ~ [~ ~(Ok)O~(X)~(Xo) (9) 
v k = l  
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This represents the sum of all those broken geodesic paths from Xo to x which 
are defined by {Ok}, a sequence of the lengths of their geodesic segments. 

If we chose the segment lengths to be small independent random vari- 
ables and ask only that their second variance satisfies the condition 

E(O~) = 38t + O(Sfl)  (10) 

then we obtain, in the limit of a large number of steps, a random Brownian 
motion on SU(2). To see this, expand (3) in the small arguments Ok 

and substitute into (9). The result is 

~J(~176 ~ ~(x, t) = ~ e/tx(~)/2 ~11(x)~(Xo) 
P 

which is the kernel of the Schr•dinger equation. 
On the other hand, in order to obtain a path integral form of (9), we 

ask that the distribution density of the geodesic arcs Ok be equal to 

k(0k, t) = (2xrit) -3/2 exP{�89 -- �88 

we obtain from (9) 

with K11(t) equal to 

~n>(x) = ~ [~11(t)ln~v(x)%(xo) 
1J 

0~ k(0, t)g11(0) sin20/2 dO 

This is a simple Gaussian integral which gives 

sin(t~/v(v + 1))exp ~ + tu(v + 1) 
)%(0 = t x / ~  + 1) 4 

If  we increase the number of steps n to infinity, t ---) tin and [K11(tln)] n ---) 
exP[�89 so that the limit of the random walk with the distribution k(Ok, 
t) is again a Brownian motion. 

3.2. Integral Kernel 

The differential operator exp(�89 acting on the function ~(x)  gives a 
time-dependent solution of Schr/Sdinger equation 
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1 A ~ ( x , t )  = i  O - ~  ~ ~(x, t) 

In this section we will show how to express this operator in an integral form 
with a kernel distribution K(x, y; t) such that 

exp{~A}f(x)=fK(x,y; t ) f (Y)d[Y] 

where d[y] is the invariant measure on the group manifold and the integration 
extends over the whole of SU(2). 

Using formally the Gaussian-type integral identity 

x sin(rex) exp[-ia2x 2} dx = m,, /~ exp - i  4a 3 ~ a  2 

we proceed as follows: 

exp(~ A} = exP(8} exp{--~ ( 1 -  A)} 

= exp dr 

Rearranging the terms, we obtain 

r sin(�89 l x / ~ -  A ) exp(it 2} 2-tr 
l ~ -  A 2"t (2"tri/) 3/2 

it fffr 1 
= exp d[r] sin �89 (2"rrit) 3/2 

f ir21[sin(�89 - A)f(x) • 
exp~ 2 t ~  ix/q~- ~ ~ sin�89 ] 

where d[r] = 4"rr(sin �89 2 dr. 
But the expression 

( sin(�89 l ~ -  A) f(x) I 
l x ~  ~ A sin ~r / 

represents Mx(r)f(g), a mean off(x) over the surface of a sphere with center 
at x and radius r. In other words, we have an invariant expression for an 
integral over the volume of the entire group, covering it an infinite number 
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of times over. This represents a summation over the winding number of 
equivalent geodesics between two fixed points. 

With this in mind we can write 

where 

1 (it} 
n=o (2"rrit) 3/2 sin[�89 y) + 'rrn] exp~ 2t  exp 

where d(x, y) is the shortest geodesic distance between x and y. 
This form of kernel coincides with the semiclassical Van Vleck-Pauli 

form, which can be written as a sum of 

Kclas(X, y; t) = D(x, y; t)l12e is(x'y'O 

where S(x, y; t) is the classical action and the preexponential term is the 
square root of the Van Vleck determinant D(x, y; t) = g(x)-ll2 det[OxOy(S)] 
g(y)-~/2. We shall call this form of a propagator exact. 

Next, we show how we can explicitly check that the exact propagator 
has the Markovian property 

f K(xo, h) d[xl] K(xl, t2)  ---- K(x0, + XI; X2, X2, tl t2) 

Here we have a three-point broken geodesic path with the starting point Xo 
placed at the origin. The middle point x~ and the fixed endpoint x2 are at 
distances 01 and 0 from the origin, respectively. These three points form a 
broken geodesic path consisting of two geodesic segments xoxl and xlx2 
whose lengths are 01 and 02, respectively. The integral over the group space 
is then to be taken as an integral over a volume of a sphere of radius 02 with 
the center at the endpoint x2. The left-hand side can then be written as 

o~ t01K(02; t2) sin 2 �89 d02 

First we calculate the mean over this sphere, taking a finite radius 02. Using 
formula (7) for the mean of the central function K(0~; t), we can write 

f 
01+02 

M~2(02)K(01; tl) = a(01, 02, u)K(u; tO du 
d01-02 

A simple calculation shows this integral to be 
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e ia8 sin(0102/t0 eiO~/2tieiO~/2tt 
sin �89 sin �89 

This is the radial distribution on SU(2), which is the equivalent of the Bessel 
process in 3D Euclidean space. Alternatively, the above expression may be 
written in the form 

K(01; tl)~c~(�89 i02/2ti where ot = 201/tl (11) 

The integration over 02 leads to a simple Gaussian integral from which one 
shows easily that the Markovian property is satisfied. 

4. PATH I N T E G R A L S  ON S Y M M E T R I C  SPACE 

The previous definition of path integrals on SU(2) may be extended to 
a symmetric space without significant changes. All that is needed is to replace 
the geodesic sphere with a complex sphere, in case the symmetric space has 
a rank larger than one. 

The random walk distribution after k jumps at the time tk = k ~t will be 

'y 
t~{~)(x) = I-[ pst(0k) Ix(d0~) Mx(0k) ~(x, Xo) 

j=l 

This formula represents a sum over certain types of continuous paths between 
Xo and x. These paths consist of k geodesic segments of successive complex 
lengths s~ . . . . .  sk distributed in accordance with the distribution ps,(0). 

Using formula (2) and the expression for the delta function as a sum of 
spherical functions, we get 

'y 
~bfk)(x) = I-[ Pat(0k) Ix(d0k) Mx(Ok) ~ ~b~(x)~bv(x0) 

j=l v 

= ~ ~:~(x),~(xo) 1-I p~,(0k) ~(d0k) ,l,~(0k) 
v j=l 

= ~, (K(~t, V))%v(X)~,v(Xo) 
IJ 

where 

f 
K(St, V) = J pst(0)~v(0) Ix(d0) (12) 

The path integral is defined by the limit k --> ~, whereby ~t = t lk  becomes 
an infinitesimal time. All that is needed is to prove that this expression is a 
kernel of the Schr6dinger equation. In order to show this, introduce the 
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Riemannian (normal) coordinates yJ based at x. In these coordinates the 
curves y/ = s~ j, determined by the unit vector ~J at x, are geodesics with 
the parameter s representing the geodesic distance from the point x. Taking 
the distribution to be the infinitesimal Feynman propagator, we obtain 

1 eiS212~t+iRStl 6 
pst(O) -- (2atilt)N/2 

where R is the scalar Riemannian curvature. 
Using the Taylor expansion at x to approximate the zonal function and 

the elementary volume element, we obtain to the second order in yJ 

~(0) ~ ~(0) + �89  

I~(d0) = x/g(0) dO1 "'" dON ~- gx/-~(1 + -~Rnmyny m) dy' " "  d y  v 

Here R,~ is the Ricci tensor at x and the subscripts after the comma denote 
partial differentiation with respect to the Riemannian coordinates. The quanti- 
ties thus obtained are in fact the components of invariant tensors. It is now 
apparent that if we substitute these expansions into (12) we obtain to the 
first order in ~t 

K(~t, v) = 1 + �89 ~t g(O)nm~v(O),nm 

As is well known, the second partial derivatives with respect to the Rieman- 
nian coordinates are equal to the second-order covariant derivatives in an 
arbitrary coordinate system 

K(~t, v) = 1 + �89 ~t A~(0) = 1 + �89 ~t 

where A(v) is the eigenvalue of the Laplace-Beltrami operator corresponding 
to the eigenfunction g~(x). 

Therefore the path integral 

lim ~(k)(x) = ~ (K(tlk, v))kd~(x)d~(Xo) 
k - - - ~  v 

= ~ eitAO')/2c~r(X)d~v(Xo) 
IJ 

is the kernel of the Schrtidinger equation. 
For the path integral to be exact a more stringent condition is 

required, namely 

K(t, p) = e iA(p)tl2 (13) 

for any finite t. This condition is not satisfied for an arbitrary symmetric 
space, but is always true when the symmetric space happens to be a compact 
group space. This is because the zonal function [~(0) on a group space is the 
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character of the group and is essentially a sum of exponentials of the form 
exp(im. 0), where m is a vector consisting of integers or half-integers. There- 
fore the evaluation of the coefficients K(t, v) reduces to the calculation of 
Gaussian integrals 

K(t, v) = f p,(0)[~(0) ~(d0) 

which have the form of (13). 

5. EXAMPLE OF U(N) 

Consider an N2-dimensional group space of U(N). The rank is N. We 
employ the standard multi-index notation whereby x --- (Xl . . . . .  XN) and x ~ 
-- liN=l ~k. Caftan decomposition allows the introduction of N polar coordi- 
nates 0 which correspond to H, the maximum Abelian subgroup of diagonal 
matrices with eigenvalues e = exp{i0}. Geometrically they represent an N- 
dimensional subspace, the so-called invariant torus. The points h lying on 
this torus can be transformed into each other by interchanging the position 
of the eigenvalues, the so-called Weyl transformation. The inner automor- 
phism of the group h ---> g -1 .  h . g ,  where g is an arbitrary element of the 
group, constitutes a rotation around the origin, so that the points with the 
same set (up to their permutation) of polar coordinates 0 lie on the same 
N ( N  - D-dimensional complex sphere. This set of coordinates is called the 
complex radius. The geodesic radius s given by s 2 = c02 (Biederharn, 1963), 
where the scaling constant c may be taken as unity. 

According to Weyl (1973), characters of the representation of a unitary 
group are given by the maximum vector p = (Pl, P2 "'" Pn) consisting of 
the ordered integers Pl ~-~ P2 ~ " ' "  > P, -> 0. With the notation 

I-I(x) ~ I-[ (Xj - -  Xi) and lip(X) --- ~ o'(p)xplxp2 ' ' "  x~/  
i<j o-(p) 

where ~(p) denotes the antisymmetric summation over all permutations of 
the vector components of p, we can express the characters of U(N) in the form 

Iip(e/0 ) 
~bp(0)- li(eiO ) 

The dimension of the representation is 

I~(p) 
do = (n - 1)!(n - 2 ) ! " .  1 

The zonal functions are the characters divided by the dimension of the 
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representation [p(0) = d~-l~bp(0). They are the eigenfunctions of the Laplace- 
Beltrami operator corresponding to the eigenvalues A(p) = E~ p2 _ R/6, 
with R being the scalar curvature of U(N), equal to�89 2 - 1) (e.g., Marinov 
and Terentyev, 1979). 

The invariant measure on the maximal torus is 

1 
Ix(dO) = -~ II(ei~ "'" dos 

with the normalization constant A = (~r)-Pn!. (n - 1)! --. 1 chosen to give 
unity volume over the U(N) manifold. Here 2p - -  ( N  2 - N )  is the dimension 
of the angular component of the group space. 

We need the form of the exact propagator pt(0) for SU(N). This can be 
found by generalizing the radial distribution (11) to 

g(01; t)~(OE)e i~O~/2t where et =-- Ol/t 

In the limit 01 ---> 0 we obtain the radial process starting from the origin, 
which is the sought expression for pt(0)- Carrying out the limiting process, 
we obtain 

II(0) e t~202/2t-itRI12 
pt(0) - ~r(eiO ) (2qrti)N2/2 

where we have used 

and the identity 

1 
K(0; t) - (2~it)N2/2 e iRal2 

lim qb~(0) - 11(0) 
~->o II ( e iO) 

The finite kernel has to be summed over all winding geodesics. This form 
of kernel has been obtained by Dowker (1971) by solving the SchrSdinger 
equation for SU(N). 

We are now ready to calculate the "Fourier" coefficient K(t, V) given 
by the formula (12): 

"lTP f j~<k OJ -- Ok E (ty(p)eiplOleip202 . . .  eipNON) e'~20212t-iRt/12 
K(t, V) = -~  Pj Pk ~(0) (27rti) N2/2 

d O l ' "  dON 

To evaluate this integral, we use the formal identity 
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I_I(Oj__Ok)Y~rexp(ip.o)lj~<k(OO__pj ~ ~ exp(ip'0) 

This leaves us with the multiple Gaussian integral 

qT p ( 0 0 ~f ~ exp(ip-0)exp[i(~ 02)/2t-iRtll2] 

iPN(2xcit)~:2/21"I(Pj - Pc)y~<k "O-pj Opk] ~ dOj 

The right-hand side factorizes into a product of Gaussian integrals. The 
expression 

(it)PNII(pj - p~) j<~-[k 0pk 

yields 

K(t, p) = e itA(p)I2 

This agrees with (13), so the propagator is exact. 

APPENDIX. SYMMETRIC SPACES 

We briefly state some facts about homogeneous and symmetric spaces. 
For a thorough discussion of these topics the reader is referred to more 
authoritative sources such as Helgason (1978) and Kobyashi and Nomizu 
(1962). 

Let us consider G to be a transformation group (also called the group 
of rigid motions) of a topological space M. The elements of the group g e 
G act on the points of the space x: x --> g'x. We shall be concerned only 
with transitive transformation groups which guarantee that for two arbitrary 
points of M there is always a transformation which sends one into another. 
Then M becomes a homogeneous space. 

Let Hx be a stationary subgroup of x, that is, a subgroup of G which 
leaves the point x unchanged. Consider another point y. Then, because of the 
homogeneity of M, there is a transformation g such that y -- g'x. In terms 
of Hx, the stationary group Hy at y is given by the conjugate subgroup 
g.Hx.g -~. Thus we need to know only the stationary group H0 at one point, 
call it Xo (the origin of M), to generate a stationary subgroup of any point of 
M. Given a rigid motion g, we can form gHo, the left coset of g with respect 
to Ho. Then all the rigid motions belonging to this coset transform the point 
x0 into the same point g" x0. This shows a one-to-one correspondence between 
the points of the homogeneous space M and the classes of left cosets with 
respect to H and allows an alternative view of M as the factor space G/H. 
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In this picture the rigid motion g' E G acting on a coset g.H produces 
another coset g ' -  g" H. 

Let T~(g) be a v-dimensional irreducible representation of G in a Hilbert 
space ~s If there is a vector ao e ~ such that for any h ~ H0 the action of 
T~(h) leaves the vector ao stationary and the restriction of T(g) to H is unitary, 
Shen T~(g) is called the representation of class 1 relative to the stationary 
subgroup/4o. Using such a representation, we can define a group function 
d?b~(g) by forming the scalar product on ~ of an invariant vector a0 with a 
vector b, where both ao, b ~ ~ :  

abe(g) ------ (b, T~(g) �9 ao) 

This is a function on G/H, the so-called spherical function of dimension v. 
Specifically, if we choose b = a0, then we obtain the so-called spherical 

zonal function ~ .  The zonal function is also defined on GIH, but in addition 
is a type of function which is constant on the two-sided cosets with respect 
to the stationary subgroup H0. For any element g E G a two-sided coset of 
Ho is formed by a set of all elements h.g.h', where h and h' belong to Ho. 
The two-sided coset forms a submanifold in GIH which is called a sphere  
with center xo (represented by coset e-Ho) and going through the point 
represented by the coset g.  H0. To any two points on the same sphere we 
can assign an invariant function on the sphere. The number r of independent 
invariant functions is called the rank of the homogeneous space and their 
totality represents the complex radius of the sphere. Similarly, complex dis- 
tance between two points is defined as the complex radius of the sphere 
formed by one point being at the center and the other lying on the sphere. 
Consequently, the zonal spherical functions are constant on the spheres with 
center determined by the stationary subgroup Ho and depend on r arguments. 

We now turn to symmetric spaces. These are homogeneous spaces 
described above with a symmetry restriction on the stationary subgroup H0. 
For space M to be symmetric, the stationary subgroup H0 has to be capable 
of being defined purely in terms of an involutory automorphism * of the 
rigid motion group G in such a way that H0 consists only of those elements 
of G which are constant under the action of * 

A significant property of a symmetric space M is that it can be embedded 
in the group of its rigid motions in the form of a connected component G 
which includes the unit element. The connected component of G consists of 
all elements which satisfy the identity g* = g-1. If we use the same symbol 
M for this component, then the action of the group of rigid motions G on 
the symmetric space M is given by g*. M.g -~. 

A simple example of a symmetric space is a group space. We consider 
group spaces of semisimple Lie groups, with particular emphasis on U(N) 
and SU(N). If we identify M with U(N), then the group of rigid motions is 
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G = U(N) • U(N), the group of a combinations of left and right group 
multiplications on U(N) with group elements of U(N). For the action of G 
we can write G.M = (g, g').M = g - l M g ' ,  where g and g' belong to U(N). 
The stationary subgroup of unity is H0 -- (g, g). This is an invariant subgroup, 
so the factor space G/H is a group isomorphic to U(N). The sphere through 
an arbitrary point g~ of U(N) is the right coset of U(N) with respect to H0 
which consists of all the elements of the form g- l  "gl "g. 

As is known, every unitary matrix g~ can be brought to a diagonal form 
---- [~y] by the above similarity transformations using unitary matrices g. 

Hence the element g~ lies on the same radius sphere as the diagonal matrix 
element ~. In fact, the ordering of eigenvalues in any particular matrix can 
be changed by the so-called Weyl transformation S within the group, so all the 
diagonal matrices with the same set of eigenvalues lie on the same sphere. The 
N eigenvalues of the diagonal matrix form the complex radius of the sphere. 
The rank of the space is N. Similarly, for SU(N), the additional condition on the 
value of the determinant reduces the rank of the space to N - 1. 

We refer to Caftan decomposition of semisimple groups. The Cartan 
generators are diagonal matrices which correspond to the maximum Abelian 
subgroup, the so-called maximum torus Tr. The dimension of Tr coincides 
with the rank of the group. 
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